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Abstract :  In this paper, without assuming the boundedness, monotonicity and differentiability of the activation 

functions, we present new conditions ensuring existence, uniqueness, and global asymptotical stability of the 

equilibrium point of bidirectional associative memory neural networks with fuzzy logic and time delays. The 

results are applicable to both symmetric and nonsymmetric interconnection matrices, and all continuous non-

monotonic neuron activation functions. Since the criterion is independent of the delays and simplifies the 

calculation, it is easy to test the conditions of the criterion in practice. An example is given to demonstrate the 

feasibility of the criterion. 
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I. Introduction 
There are two basic cellular neural networks structures being proposed, namely traditional CNNs and 

fuzzy CNNs [1]. The latter integrates fuzzy logic into the structure of traditional CNNs. It is known that in 

hardware implementation, time delays occur due to finite switching speeds of the amplifiers and communication 

time, lead to an oscillation and furthermore, to instability of networks. Therefore, the study of stability of 

FCNNs with delays is practically required. In most situations, delays are variable. Some conditions ensuring the 

globally exponential stability of FCNNs with variable time delays are given in [2], in which differentiability of 

the delays is assumed and the unbounded delays was not involved. It is more likely there are multiple states, 

even infinite states affecting the current state. Some results on the stability of neural networks involving time 

delays are given in [3-8]. However, FCNNs with unbounded delays and variable coefficients are seldom 

considered. In [9], authors have obtained some results regarding FCNNs with distributed delays, but the global 

exponential stability of FCNNs with unbounded delay is not studied. In [10], the state estimation problem was 

studied for the fuzzy cellular neural networks with unbounded distributed delays, but the coefficients of the 

fuzzy system was assumed to be constant . 

In this paper, we study the existence, uniqueness and globally exponential stability of the equilibrium 

point of FCNNs with variable coefficients, in which activation functions are Lipschitz continuous and there 

exist unbounded delays. By constructing proper nonlinear integro-differential inequalities, applying M-matrix 

theory and vector Liapunov function method, we obtain sufficient conditions for existence, uniqueness and 

globally exponential stability of the equilibrium point of FCNNs with variable coefficients and unbounded 

delays.    

 

II. Assumption and Lemma 

In this paper, 
u and 

A  denote the transpose of a vector u and a matrix A , where Ru n and nnRA  . 

sA][  is defined as 2][][ AAA s  
. || u  denotes the absolute-value vector given by 

 |)|,|,(||| 1 nuuu  , |||| u  denotes a vector norm defined by 
2/122

1 )(|||| nuuu   . 
1A  denotes the 

inverse of A , and || A  denotes absolute-value matrix given by nnijaA  |)(||| , |||| A  denotes a matrix norm 

defined by  :(max{|||| A  is an eigenvalue of 
2/1})AA

, det (A) denotes the determinant of matrix A. 

),,diag( 1 nddD   represents a diagonal matrix. ∧ and ∨ denote the fuzzy AND and fuzzy OR operation, 

respectively. 

The dynamical behavior of FCNNs with unbounded and variable time delays can be described by the 

following nonlinear differential equations: 
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where xi  is the state of neuron i , ni ,,2,1  , and n  is the number of neurons; iu  and )(tJ i  denote input 

and bias of the i th neuron, respectively; if  is the activation function of the i th neuron; )(td i  is the damping 

constants, and 0)( td i ; )(tbij , )(tcij are elements of feedback template and feedforward template; )(tij  , 

)(t
ij  , )(tRij  and )(tS ij  are elements of fuzzy feedback MIN template, fuzzy feedback MAX template, 

fuzzy feedforward MIN template and fuzzy feedforward MAX template, respectively; )(tij  denote the 

variable time delays. Assume that the delays )(tij  are bounded, continuous with ],0[)(  tij  for all 0t , 

where  is a constant, nji ,,2,1,  . ),0[),0[: ijk ( nji ,,2,1,  ) are piecewise continuous on 

),0[   and satisfy 

)()(e
0


ijij

s psdsk 


, nji ,,2,1,  , 

where )(
ij

p  are continuous functions in ),0[  , 0 , and 1)0( 
ij

p . 

The initial conditions associated with equation (1) are of the form  

   ssx
ii  , 0 s ,   RC

i
,0,  , nji ,,2,1,   

where  s
i is bounded and continuous.  

In this paper，we give the following assumptions. 

Assumption 1. For system (1), there exit constant numbers id , ijb , ij ,  ij , such that 

)}({inf
0

tdd i
t

i


 , )}({sup
0

tbb ij
t

ij


 , )}({sup
0

tij
t

ij 


 , )}({sup
0

tij
t

ij 


 , nji ,,2,1,  . 

Assumption 2. For each  nj ,,2,1  , the activation function RRf j : is globally Lipschitz with 

Lipschitz constants 0jL , i.e. |||)()(| jjjjjjj yxLyfxf   for all jx , jy .  

In the following, we let  

),,,( 21 ddddiagD n , nnijbB  )( , nnij  )( , 

nnij  )( , ),,,diag( 21 nLLLL  . 

To obtain our results, we give the following definitions and lemmas. 

Definition 1. The equilibrium point 
*x  of (1) is said to be globally exponentially stable, if there exist constant 

  > 0 and 0M  such that  

    tetxMtxtx   ||)(|||||| **
 

for all 0t , where |})(|sup{max|||| *

]0,[1

*

ii
sni

xsx 





. 

Definition 2. A  real nn  matrix A =( aij ) is said to be an M-matrix if 0ija , nji ,,2,1,  , ji  , 

and all successive principal minors of A  are positive. 

Lemma 1. Let A =( aij ) be a matrix with non-positive off-diagonal elements. Then the following statements are 

equivalent: 

(i) A is an M-matrix; 

(ii) The real parts of all eigenvalues of A are positive; 

(iii) There exists a vector 0 , such that 0


A ; 
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(iv) A is nonsingular and all elements of A
1

 are nonnegative; 

(v) There exists a positive definite nn diagonal matrix Q such that matrix 
QAAQ is positive definite. 

Lemma 2. Suppose x  and 'x  are two states of system (1), then  
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Lemma 3. If )(xH C 0 satisfies the following conditions, then )(xH is a homeomorphism of R
n .  

i) )(xH  is injective on R
n ,  

ii) 
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||)(||lim
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xH
x

.  

 

III. Existence of  the equilibrium 
 

In the section, we study the existence and uniqueness of the equilibrium point of the system (1). We 

first study the solutions of the nonlinear map associated with (1) as follows: 
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*x  such that 

0)( * xH , i.e., systems (1) have a unique equilibrium 
*x . 

Theorem 1. If Assumption 1 is satisfied, and LβαBD |)||||(|   is an M matrix, then for each u , 

system (1) has a unique equilibrium point. 

Proof. In order to prove that for every input u , (1) has a unique equilibrium point 
*x , it is only to prove that 

)(xH  is a homeomorphism on R
n

. In the following, we shall prove that map )(xH  is a homeomorphism in 

two steps. 
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Rewrite the above inequalities (3) in matrix form, we get 
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However in (15), 0))(( 1  tVD i , this is a contradiction. So 0)( ltV ii  , for all 0t . Furthermore, from 
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, where ./)1( mMeM    From the Definition 1, the 

equilibrium point of (1) is globally exponential stable. The proof is completed. 

 

V. An illustrative example 
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globally exponential stable. 

VI. Conclusion 
In this paper, without assuming the boundedness and differentiability of the activation functions, we 

analyze the existence, uniqueness, and globally exponential stability of the equilibrium point of fuzzy cellular 

neural networks with variable coefficients and unbounded delays. Applying the idea of Vector Liapunov 

function method and M-matrix theory, new criteria are derived for ascertaining existence, uniqueness for the 

equilibrium point and its global exponential stability of fuzzy cellular neural networks with variable coefficients 

and unbounded delays. In addition, due to sufficient conditions obtained are independent of the delays, these 

criteria can be easily checked in practice. 
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