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Abstract : In this paper, without assuming the boundedness, monotonicity and differentiability of the activation
functions, we present new conditions ensuring existence, uniqueness, and global asymptotical stability of the
equilibrium point of bidirectional associative memory neural networks with fuzzy logic and time delays. The
results are applicable to both symmetric and nonsymmetric interconnection matrices, and all continuous non-
monotonic neuron activation functions. Since the criterion is independent of the delays and simplifies the
calculation, it is easy to test the conditions of the criterion in practice. An example is given to demonstrate the
feasibility of the criterion.
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I. Introduction

There are two basic cellular neural networks structures being proposed, namely traditional CNNs and
fuzzy CNNs [1]. The latter integrates fuzzy logic into the structure of traditional CNNs. It is known that in
hardware implementation, time delays occur due to finite switching speeds of the amplifiers and communication
time, lead to an oscillation and furthermore, to instability of networks. Therefore, the study of stability of
FCNNs with delays is practically required. In most situations, delays are variable. Some conditions ensuring the
globally exponential stability of FCNNs with variable time delays are given in [2], in which differentiability of
the delays is assumed and the unbounded delays was not involved. It is more likely there are multiple states,
even infinite states affecting the current state. Some results on the stability of neural networks involving time
delays are given in [3-8]. However, FCNNs with unbounded delays and variable coefficients are seldom
considered. In [9], authors have obtained some results regarding FCNNs with distributed delays, but the global
exponential stability of FCNNs with unbounded delay is not studied. In [10], the state estimation problem was
studied for the fuzzy cellular neural networks with unbounded distributed delays, but the coefficients of the
fuzzy system was assumed to be constant .

In this paper, we study the existence, uniqueness and globally exponential stability of the equilibrium
point of FCNNs with variable coefficients, in which activation functions are Lipschitz continuous and there
exist unbounded delays. By constructing proper nonlinear integro-differential inequalities, applying M-matrix
theory and vector Liapunov function method, we obtain sufficient conditions for existence, uniqueness and
globally exponential stability of the equilibrium point of FCNNs with variable coefficients and unbounded
delays.

Il.  Assumption and Lemma
In this paper, uand A" denote the transpose of a vector U and a matrix A , where U € R"and AeR™".

[A]° is defined as [A]' =[A" +A]/2 . |u| denotes the absolute-value vector given by
|ul=(ug],---,Ju, D", ||u]| denotes a vector norm defined by || U [|= (uZ +---+u?)*?. A™* denotes the

inverse of A, and | A| denotes absolute-value matrix given by | A= (| jj [) nxn . || Al denotes a matrix norm

defined by || A||= (max{A: A is an eigenvalue of ATA})Y?, det (A) denotes the determinant of matrix A.

D =diag(d,,---,d,) represents a diagonal matrix. /\ and \/ denote the fuzzy AND and fuzzy OR operation,

respectively.
The dynamical behavior of FCNNs with unbounded and variable time delays can be described by the
following nonlinear differential equations:
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d"(;t(” — d,O%® + gbij OF,(x,@ - 7))
+ Zn:cij Bu; +J; (V) + j/:\laij (t)J'_too ki (t—s)f;(x;(s))ds
nJ=l n n
+J\:/1ﬁij(t)'|._twkij (=), (x, (s)ds+/\ Ry Ou;+V, $3(Du; i =120, (@
where x; is the state of neuron i, 1 =12,---,n, and n is the number of neurons; u; and Ji(t) denote input

and bias of the ith neuron, respectively; f, is the activation function of the ith neuron; d; (t) is the damping
constants, and d; (t) > 0; by (t) , c; (t) are elements of feedback template and feedforward template; ¢ (t) |
B (1), Ry (t) and S;(t) are elements of fuzzy feedback MIN template, fuzzy feedback MAX template,
fuzzy feedforward MIN template and fuzzy feedforward MAX template, respectively; rj (t) denote the
variable time delays. Assume that the delays ;; () are bounded, continuous with ; (t) €[0,7] forall t >0,
where 7 is a constant, i, j =1,2,---,n. kij :[0,00) = [0,) (i, j=1,2,---,n) are piecewise continuous on
[0, 0) and satisfy

[ ek (s)ds=p;(B). i,i=12,-n,
where p,; (/) are continuous functions in[0,5),6>0,and p;(0)=1.
The initial conditions associated with equation (1) are of the form
x,(s)=¢,(s), —r<s<0, ¢, e C([-7,0}R), i, j=12,---,n
where ¢, (S) is bounded and continuous.

In this paper, we give the following assumptions.

Assumption 1. For system (1), there exit constant numbers d,, bij Qs

d; = igg{di(t)}v by =supfb; (1)}, o =sup{e; (1)}, B; =sup{B; (t)}.i,j=12,---,n.

Assumption 2. For each | e {1,2,~~-,n}, the activation function fj :R — R is globally Lipschitz with

jj » such that

Lipschitz constants L; >0, i.e. | fj(xj)— fj(yj)|s L; |Xj -y, | for all X, Y-
In the following, we let
D=diag(d1,d2,"',dn), B= (bij)nxn! o =(Oﬂij)nxnl

ﬁ = (IBij)nxn' L= diag(l—lv Lza"', I—n)
To obtain our results, we give the following definitions and lemmas.

Definition 1. The equilibrium point X" of (1) is said to be globally exponentially stable, if there exist constant
A >0and M > 0 such that

IxE)-x"OlI<M [ g—x"(t) [ e

forall t >0, where || ¢ — X" ||= rlTlaX{ sup | ¢ (s)—x [}.
<I<N - se[-7,0]

Definition 2. A real Nxn matrix A=(a;) is said to be an M-matrix if a; <0, 1, j=12,---,n, i # J,
and all successive principal minors of A are positive.
Lemma 1. Let A=( ajj ) be a matrix with non-positive off-diagonal elements. Then the following statements are

equivalent:
(i) A'is an M-matrix;
(ii) The real parts of all eigenvalues of A are positive;

(iii) There exists a vector & > 0, such that §T A>0;
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(iv) Ais nonsingular and all elements of A™ are nonnegative;
(v) There exists a positive definite N x N diagonal matrix Q such that matrix AQ + QA is positive definite.
Lemma 2. Suppose X and X' are two states of system (1), then

|j/:\laij fj(xj)_ j/:\laij fj(xj')|S;|aij I 0x;) = f;(x;) |

| j\i/lﬁij fj(Xj)_ j\ri/llgij fj(xj')|gzri:|ﬂij " fJ(Xi)_ fJ(Xi|)|

Lemma 3. If H (x) e ¢ satisfies the following conditions, then H (X) is a homeomorphism of R" .
i) H(X) isinjectiveon R",
iy im ||H(X) |~ .

(x|l

I11. Existence of the equilibrium

In the section, we study the existence and uniqueness of the equilibrium point of the system (1). We
first study the solutions of the nonlinear map associated with (1) as follows:

H;(x) = —d;®x; + Zn:bijmfj()(j)
j=1

FAaOF06) +V B OF () + 1,1 =12,-n, @)

where [, :;Cij (B, +,-/:\1R“ (u; +j\:/15ij Ou; +J; (1), i=12,---n. Welet

H=(H,,H,,--,H )", I =(,1,,-,1,)".1tis well known that the solutions of H(X) =0 are
equilibriums in (1). If map H (X) is a homeomorphism on R", then there exists a unique point X such that
H(x") =0, i.e., systems (1) have a unique equilibrium X .

Theorem 1. If Assumption 1 is satisfied,and D — (| B | + | a | + | £ |)L is an M matrix, then for each U ,
system (1) has a unique equilibrium point.

Proof. In order to prove that for every input U, (1) has a unique equilibrium point X', itis only to prove that
H (X) is a homeomorphism on R". In the following, we shall prove that map H (X) is a homeomorphism in

two steps.
In the first step, we prove that H (X) is an injective on R". For purposes of contradiction, suppose that

there exist X,y € R" with X # Y, such that H(X) = H(y). From Assumption 1, Assumption 2, Lemma 2
and (2), we get
| H; (%) —Hi(yi) |

44,0 -y + > b O x,) - f,(y))]
j=1

n n n n

+j/:\1aij (t)fj(xj)_j/:\laij (t)fj(yj) +J\:/1ﬂij(t)fj(xj)_}:/lﬂij(t)fj(yj)|

> 4 % —y, =D b® 1 f,) — £,(y,) |
=1

n n n n

_|j/:\laij(t)fj(xj)_{:\laij(t)fj(yj)|_|J.\:/lﬁij(t)fj(xj)_}z/lﬂij(t)fj(yj)|
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j=1

=Sy 500 = {0 1-X08 10 = 1,

j=1
Rewrite the above inequalities (3) in matrix form, we get
IHO)-HW 2D =B l+lal+|pDLIlx-yl @

Since D —(| B|+|al|+]| L isan M-matrix, fromLemma1, [D — (| B | + | a | + | g DL]"
is a nonnegative matrix. Thus multiplying both sides of the above inequality by
[D-(B|+]al+] g [)LI"does not change the inequality direction, it comes to
x—yD-(Bl+]al+]phLI" [ HKX - Hy |.
From H(x) = H(y),we have | X—y|<0,s0 | Xx—Yy|=0,ie., X=Y.From the supposition X # Y, thus
this is a contradiction. So map H (X) is injective.
In the second step, we prove that ”1‘i|r_r)loo || H(X) || . Let

H(x)=H(x)-H(0). (5)
To prove that H (X) is a homeomorphism, if only suffices to show that H_(X) is a homeomorphism. Because
of D—(|B|+]|al+]| )L isan M-matrix, from Lemma 1, there exists a positive define diagonal
matrix T = diag{T,,T,,---,T,}, such that

(MO -UBl+lal+[pDLL >2eE, >0,
So, we have
MDD +(UBl+lal+[pDHL)I <-E, <0, (6)
where ¢ is a sufficiently small positive number and E, is the identity matrix. From Assumption 1, Assumption
2, Lemma 2 and (6), we get

[Tx]"H (x) = [Tx]" (H (x) - H(0))
=T - dOxE %Y by ® L, (x)) — ;0]
i=1 j=1

n n n n

+ Xi[j/=\1aij t) fj (Xj) _j/=\laij t) fj (0)] +x; [}=/1ﬂ” ) fj (Xj)_l\iﬂij ®) fj O

< an:Ti{—di(t) % P+ Z; by @ |1 f,(¢,) — £,(0) |
i= j=

n n n n

+ X | j/=\laij(t)fj(xj)_j/=\laij(t)fj(O)|+|Xi ”J\z/lﬂij(t)fj(xj)_}z/lﬂij(t)fj(o)|}
ST I P 1Y Ty 1] ) - 1,00
ey 11,00~ F,O 1218, 1 1,(x) - 1, 1}

SO T-d Ix Palx [ D CHoy [+ ay [+ 185 DLy | x; [}
i=1

i=1

S xTMED+UB+lal+ gL x|
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SxTTED+UBI+]al+ DL | x|
= x[T MDD+ (Bl +lal+l gL | x|[<—¢|x|? @)
el x|

IT

Using Schwarz inequality, from (7), we get & | X | < T [l x Il H(X) ||, so | H(X) ||> . Therefore,

| H(X) |— 40, ie., || H(X) |> +o0 as || X ||-> +o.
From steps 1 and 2, according to Lemma 3, we know that for every input U, map H(X) is a
homeomorphism on R", so system (1) has a unique equilibrium point. The proof is completed.

IV. Global exponential stability
Theorem 2. If Assumption 1 is satisfiedand D — (| B | + | @ | + | A )L is an M-matrix, then for each U ,
system (1) has a unique equilibrium point, which is globally exponentially stable.
Proof. Since D — (| B | + | &« | + | g |)L is an M-matrix, from Theorem 1, systems (1) have a unique

equilibrium point X" . Let y(t) = X(t) — X", (L) can be written as
y; (0 = —d; Oy, (t) + zbij ®) fj (yj (t- Tij 1)+ X:) - Zbij ® fj (Xj)
j=1 j=1

Aa O] Ky (t=9)F,(y;(8)+x))ds — Ay O] Ky t=5)F;(x])ds

j=1

V5, O] ki t=9)f,(y;(s)+x])ds -V 4, ®] Kk (t=9)f,(x))ds,i=12,,n. ()

The initial conditions of equation (13) are W(s) = ¢(s) — X", s [~7,0] . Systems (13) have a unique
equilibriumat y =0.

Dueto D—(|B|+|al|+|p|)L isan M-matrix, from the Lemma 1, we get that there exist
positive constant numbers &,,i =12,---n, satisfy

—&d, + ilf,.(I by |+ ay |+ B DL, <0,i=12--n. ©)
Constructing function "
F(u)=-¢d —w+ J_ifj[e’“ by |+ oy [+ 1 g Dpy]Ly, 1=12,---n,
It is obviously that F, () is a continuous function about 4 and from (9) we know that
F(0)=—¢&d, + Ji;g by |+ oy |+ B DL, <0, i=12--n.
So, there exists a constant A > 0 such that
— & -2+ jﬁlgj[eﬂf by |+ o |+ | gy DL < 0,i=12,-n.  (10)

Let
Vi) =e" |y ()| (11)
where A is a constant to be given. Calculating the upper right derivative of V, (t) along the solutions of (8),
from Assumption 1 ,Assumption 2 and Lemma 2, we get we have

D" (v, (1)) = ™ sgn(y, (D)LY (t) + 2y, (1)]
< a0 |y, @ [+, O1 £y, -7, O) + X))~ ()]
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[ Aay Of K E=9),(y,(6)+X)ds - A e, Of Kk, (t=5)T, ()ds|
IV B, Ok (t=9)T,(y,(5)+x})ds

VO G- 9T,0)ds [+ 21y, O B
< e’i=d, | y,® |

#3010y 17,7, 0 X))~ ,00)
+3leny 198,07, s [y 1591, 6,
+§|ﬁu 1 Ky =91y, &+ X)ds— [ Ky (E=9)F,0<)ds[+2] v, @)
< efed, |y, 1+ Y0by 1L, 1y, (-7, @)

j=1

+i(l a; | +1B; |)LjJ:tookij(t_S)|yj(S)lds+ﬂ'| yi (®) [

< —die” [ yi® [+ ]by [Le" e |yt -z, (1)
j=1
n t
+ Z(l a; |+ B DL _LO ki (t— s)e’( e’ | y;(s)|ds + e |y, (1)
=1

= (=d, + AV, + Zn:\ b, | Lye" "Vt — 7, ®)
=1

n t
ACARVAT [ ek (t=s)V,(s)ds
J=

< (-d; + WV, + Z\ b“- | Lje“ sup Vj(S)
i=1

t—r<s<t

+ Z;‘(l a; |+ B DL; fooel(t_s)kij (t—s)V;(s)ds, i=12,--,n. (12)
J:
Let&,, = max &&= _qlin & taking 1y = (L+3)e™ | W[ /&, . &> Oisaconstant. Then,

V.(s)=e® |, (s)|<&l,, —7<s<0,i=12---n. (13)
In the following we prove
Vit)<é&ly, t>0,i=12,---n. (14)
If (14) is not true, then from (13), there exist t; > 0and some i such that

Vi(t) =¢&l,, DT(Vi(t,)) >0, Vv n< ijlo’ j=12,---n, te[-r,t]. (15)

According to (10), (12) we get

DV, (t,)) < (=d; + AV,(t,) + D |b; | L,e*” sup V,(s)
j=1

t—r<s<t;
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n t, s
+ (ay 1+1 8, DL, [ "4k, (t, = s)V, (s)ds
j=1
< {— fi (d| - }u) + jZi:lfj[e)J ‘ bij ‘ +(| Otij ‘ + | :Bij ‘)J:Oo e)"kij (,u)d,u]Lj}IO

={-¢&W; - D+ igj[e” by [+ ey |+ 1 g DpyD L, <0
j=1

However in (15), D™ (V, (t,)) = 0, this is a contradiction. So V; (t) < &l,, for all t > 0. Furthermore, from
(112), (14), we get
i@ &lee ™ <@+o)e™ [PI& /&g =M [ ¥le™ t20,i=12,--n.

So [XM) =X KM [ ¢-X|e™, where M =(1+0)e”&, /&, . From the Definition 1, the
equilibrium point of (1) is globally exponential stable. The proof is completed.

V. Anillustrative example
Consider the two-dimensional neural networks with variable coefficients and unbounded delays, where

3-sin(t) 0 _ i _
S I L I |

a® = 0y©),. = [y 2L OV 0 = (4 @), = |12 02000

f.(u)=sinu), f,(u) =" —e™)/(e" +e™) k(1) =e™" Kk, (t) = 2/(1+t*). Itis easy to verify that
d;(t), b;(t), a; (), B;(t) satisfy Assumption 1; f, (u), f, (u) satisfy Assumption 2 with
andL, =L, =1; k;(t) and k, (t) satisfy initial condition(A). Thus we get

10
_[20] g_f03-02],_[0103] 5_[01302] _ _
D‘[o 1]8‘[0.12 0.2}’“‘[0.10.1]ﬁ‘[0.1 0.1}"‘{0 J'S"Wwbta'”

D-(Bl+|al+|pL= {_1'04;2 _00'67] is a M-matrix, by Theorem 2, the neural network s is

globally exponential stable.

VI. Conclusion

In this paper, without assuming the boundedness and differentiability of the activation functions, we
analyze the existence, uniqueness, and globally exponential stability of the equilibrium point of fuzzy cellular
neural networks with variable coefficients and unbounded delays. Applying the idea of Vector Liapunov
function method and M-matrix theory, new criteria are derived for ascertaining existence, uniqueness for the
equilibrium point and its global exponential stability of fuzzy cellular neural networks with variable coefficients
and unbounded delays. In addition, due to sufficient conditions obtained are independent of the delays, these
criteria can be easily checked in practice.
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